
Engineering	Principles	 	Name_____________________________	
Electrical	Engineering	
Color	Wheel	4.6.1	Doc:	Images	 	 Date______________________	Team		__________	
	

	
Developed	through	a	partnership	between	the	University	of	Utah	College	of	Engineering	and	Granite	School	

District	

	 	
Page	1	

Problem	statement	
Develop	a	persistence-of-vision	color	wheel	utilizing	8	RGB	diodes	and	an	Arduino	UNO	R3	board.	

Documentation:	Pictures	
1. Create	a	new	graphics	file	using	Paint.Net.		Set	the	image	size	to	8	pixels	high	by	64	pixels	wide.		

Draw	a	picture	to	be	displayed	on	Arduino.			A	black	background	is	recommended.	
2. Save	this	picture	and	upload	it	to	your	group’s	file	space	on	Canvas.		File	names	cannot	contain	

and	spaces	or	special	characters.	

Documentation:	Image	Translation	
3. Open	the	picture	using	GIMP.		Gimp	is	an	image	translation	program.		It	can	read	most	graphics	

file	formats	and	can	output	them	in	different	formats.		We	will	be	exporting	to	“C”	code	which	
can	be	read	by	Arduino.	

a. Select	File->Export	As	
b. change	“All	export	images”	to	“C	source	ode	(*.c)”	
c. Replace	the	file	extension	(.png)	with	(.c)	
d. Select	Export	
e. Uncheck	all	the	boxes	and	select	Export	again.	

4. Open	the	file	using	notepad	to	see	what	it	looks	like.		See	below	for	a	description	of	the	code.		If	
your	file	looks	different	than	the	example,	review	the	instructions	carefully	and	regenerate	the	
file.	

5. Upload	this	file	to	your	group’s	file	space	in	Canvas.	
6. Discuss	with	your	team	the	image	file	you	created	and	the	structure	of	the	C	file	you	exported.	

Documentation:	Image	Refinement	
7. Work	with	your	team	to	create	additional	images	as	necessary.	

	 	

Engineering	Principles	 	Name_____________________________	
Electrical	Engineering	
Color	Wheel	4.6.1	Doc:	Images	 	 Date______________________	Team		__________	
	

	
Developed	through	a	partnership	between	the	University	of	Utah	College	of	Engineering	and	Granite	School	

District	

	 	
Page	2	

Image	file	as	a	C	Structure	
In	C,	Structures	(struct)	are	compound	variables	containing	multiple	related	pieces	of	information.		The	
graphics	images	you	created	using	GIMP	defines	a	structure	which	creates	a	variable	called	
gimp_image.			It	contains	everything	you	need	to	know	to	display	the	image.		Inside	the	struct	are	
the	width	(64),	height	(8)	and	bytes_per_pixel	(3)	along	with	an	array	of	characters	called	
pixel_data	representing	the	individual	pixel	values.		
	

static const struct {
 unsigned int width;
 unsigned int height;
 unsigned int bytes_per_pixel; /* 2:RGB16, 3:RGB, 4:RGBA */
 unsigned char pixel_data[64 * 8 * 3 + 1];
} gimp_image = {
 64, 8, 3,

"\377^\304\0\0\0\0\0\0\377^\304\0\0\0\0\0\0\377^\304\0\0\0\0\0\0\377^\
304"
	
Most	of	the	pixel	data	is	represented	in	octal	format.		Each	byte	or	character	begins	with	a	backslash	
followed	by	one	to	three	digits	ranging	from	0	to	7.		The	largest	number	is	/377	which	is	the	binary	
number	11	111	111.		In	decimal	this	is	255.		In	hex	it	would	be	written	0xFF.		You	may	also	see	text	
characters	in	the	data	list	–	the	pixel	value	is	the	ASCII	value	of	the	character	(A	=	65,	a	=	97).	
	
Pixels	are	stored	in	the	array	by	color,	row,	and	then	column	(R1C1	Red,	R1C1	Green,	R1C1	Blue,	R1C2	
Red,	R1C2	Green,	R1C2	Blue,	...).			The	pixel	array	index	can	be	calculated	by	adding	color	(0,	1	or	2)	to	
(row	*	width	+	column)	*	bytes_per_pixel.		
	
To	access	elements	of	a	struct,	use	the	struct	variable	name	followed	by	a	dot	(.)	followed	by	the	
element	name	within	the	struct.	
	

gimp_image.width = 64; // sets the image width to 64
pixelValue = gimpImage.pixel_data[35]; // retrieves the 36th pixel

	

